Reduction Groups and Automorphic Lie Algebras

نویسندگان

  • S. Lombardo
  • A. V. Mikhailov
چکیده

We study a new class of infinite dimensional Lie algebras, which has important applications to the theory of integrable equations. The construction of these algebras is very similar to the one for automorphic functions and this motivates the name automorphic Lie algebras. For automorphic Lie algebras we present bases in which they are quasigraded and all structure constants can be written out explicitly. These algebras have a useful factorisations on two subalgebras similar to the factorisation of the current algebra on the positive and negative parts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Classification of Automorphic Lie Algebras

It is shown that the problem of reduction can be formulated in a uniform way using the theory of invariants. This provides a powerful tool of analysis and it opens the road to new applications of these algebras, beyond the context of integrable systems. Moreover, it is proven that sl2(C)–Automorphic Lie Algebras associated to the icosahedral group I, the octahedral group O, the tetrahedral grou...

متن کامل

Generalized Moonshine Ii: Borcherds Products

The goal of this paper is to construct infinite dimensional Lie algebras using infinite product identities, and to use these Lie algebras to reduce the generalized moonshine conjecture to a pair of hypotheses about group actions on vertex algebras and Lie algebras. The Lie algebras that we construct conjecturally appear in an orbifold conformal field theory with symmetries given by the monster ...

متن کامل

Automorphic Lie Algebras with Dihedral Symmetry

Automorphic Lie Algebras are interesting because of their fundamental nature and their role in our understanding of symmetry. Particularly crucial is their description and classification as it allows us to understand and apply them in different contexts, from mathematics to physical sciences. While the problem of classification of Automorphic Lie Algebras with dihedral symmetry was already cons...

متن کامل

Instructional Conference on Representation Theory and Arithmetic Notes Taken by Mike Woodbury

Goal of Conference 2 1. Matt Emerton: Classical Modular Forms to Automorphic Forms 2 1.1. The Growth Condition 3 1.2. Passage to Representation Theory 4 2. David Nadler: Real Lie Groups 5 2.1. Basic Notions 5 2.2. Examples 5 2.3. Classification 6 2.4. Useful Decompositions 7 3. Jacob Lurie: Lie Theory and Algebraic Groups 8 3.1. Classification 9 4. Jacob Lurie: Representations of algebraic grou...

متن کامل

Reflection Groups in Hyperbolic Spaces and the Denominator Formula for Lorentzian Kac–moody Lie Algebras

This is a continuation of our ”Lecture on Kac–Moody Lie algebras of the arithmetic type” [25]. We consider hyperbolic (i.e. signature (n, 1)) integral symmetric bilinear form S : M × M → Z (i.e. hyperbolic lattice), reflection group W ⊂ W (S), fundamental polyhedron M of W and an acceptable (corresponding to twisting coefficients) set P (M) ⊂ M of vectors orthogonal to faces of M (simple roots)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008